

# Consumables Inventory Management

## A Small Case Study

Alexander Szewczak, PhD  
Director, Pharmacology  
Merck Research Laboratories Boston

# Improving Pharma Productivity: Assets Matter

---

- For an individual, more assets is better. For a company, fewer assets (less invested capital) is better.
- Excess consumables inventory does not show up on the GAAP balance sheet, but it is an unproductive asset nonetheless.
  
- Well-run, lean companies use as little inventory as possible.
  - Avoid paying for unnecessary storage space
  - Avoid opportunity cost of tied-up capital

# Reduce assets to increase return on equity

## MRK Selected Financials

| \$ millions | 2013*      | 2013       | 2012       | 2011       |
|-------------|------------|------------|------------|------------|
| Revenue     | \$ 44,033  | \$ 44,033  | \$ 47,267  | \$ 48,047  |
| Net Income  | \$ 4,404   | \$ 4,404   | \$ 6,168   | \$ 6,272   |
| Assets      | \$ 100,363 | \$ 105,645 | \$ 106,132 | \$ 105,128 |
| Liabilities | \$ 55,880  | \$ 55,880  | \$ 53,112  | \$ 50,611  |
| Equity      | \$ 44,483  | \$ 49,765  | \$ 53,020  | \$ 54,517  |

Source: Yahoo Finance

## Dupont 3-component decomposition of ROE

|                                   | 2013* | 2013  | 2012  | 2011  |
|-----------------------------------|-------|-------|-------|-------|
| Asset Utilization, Sales/Assets   | 0.439 | 0.417 | 0.445 | 0.457 |
| Profitability, Income/Sales       | 0.100 | 0.100 | 0.130 | 0.131 |
| Financial Leverage, Assets/Equity | 2.256 | 2.123 | 2.002 | 1.928 |
| Return on Equity                  | 0.099 | 0.088 | 0.116 | 0.115 |

Return on Equity = Sales/Assets x Income/Sales x Assets/Equity

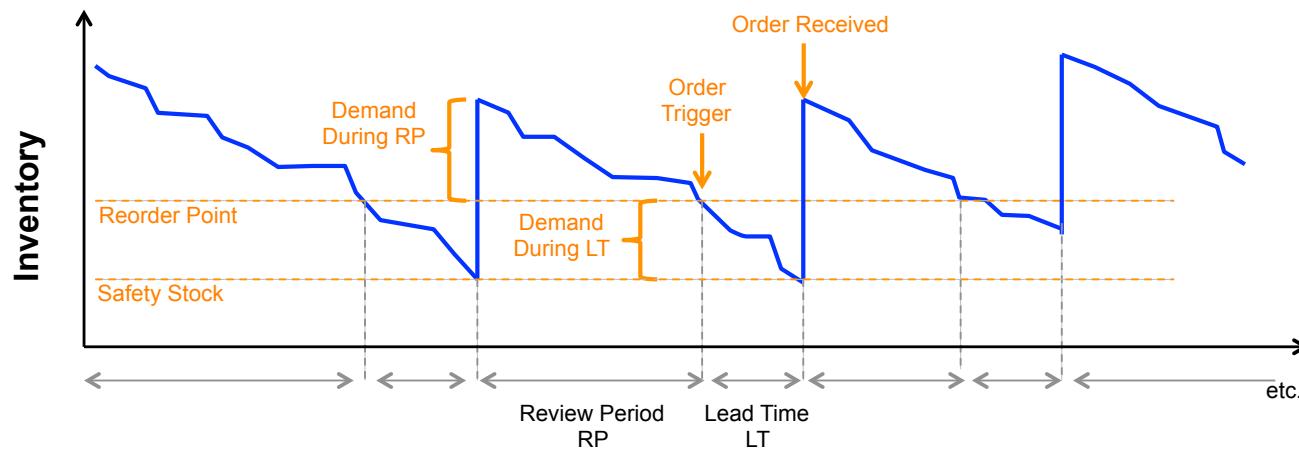
# Reduce assets to increase return on equity

## MRK Selected Financials

| \$ millions | 2013*      | 2013       | 2012       | 2011       |
|-------------|------------|------------|------------|------------|
| Revenue     | \$ 44,033  | \$ 44,033  | \$ 47,267  | \$ 48,047  |
| Net Income  | \$ 4,404   | \$ 4,404   | \$ 6,168   | \$ 6,272   |
| Assets      | \$ 100,363 | \$ 105,645 | \$ 106,132 | \$ 105,128 |
| Liabilities | \$ 55,880  | \$ 55,880  | \$ 53,112  | \$ 50,611  |
| Equity      | \$ 44,483  | \$ 49,765  | \$ 53,020  | \$ 54,517  |

Source: Yahoo Finance

## Dupont 3-component decomposition of ROE


|                                   | 2013* | 2013  | 2012  | 2011  |
|-----------------------------------|-------|-------|-------|-------|
| Asset Utilization, Sales/Assets   | 0.439 | 0.417 | 0.445 | 0.457 |
| Profitability, Income/Sales       | 0.100 | 0.100 | 0.130 | 0.131 |
| Financial Leverage, Assets/Equity | 2.256 | 2.123 | 2.002 | 1.928 |
| Return on Equity                  | 0.099 | 0.088 | 0.116 | 0.115 |

Return on Equity = Sales/Assets x Income/Sales x Assets/Equity

Decreasing assets by 5% increases return on equity by 12%

# Modern Inventory Management

- Based on probabilistic models of the risk of stock outs vs. costs of ordering and holding inventory



**Safety stock** = Reserve stock held to guard against running out of supplies (stock out)

**Review Period** = Time between receiving an order and placing the next one

**Lead Time** = Time between placing order and receiving supplies

**Demand During Lead Time (DDLT)** = Amount of supplies consumed while waiting for order to arrive

**Demand During Review Period (DDRP)** = Amount consumed during review period

**Order Point** = Inventory level at which an order is triggered

**Order Quantity (Q)** = The amount of material ordered at one time

**Order Cost** = How much it costs to place an individual order

**Inventory Holding Cost** = How much it costs to hold inventory, % of value per year.

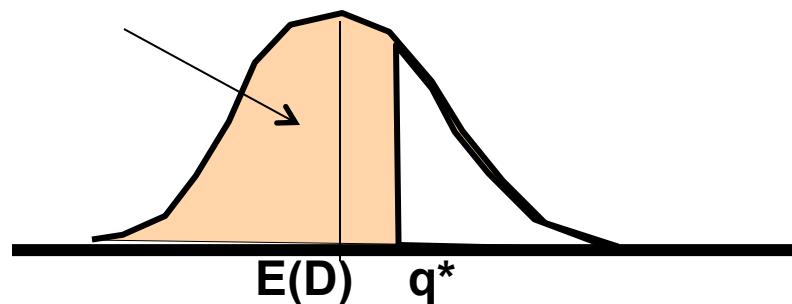
# Economic Order Quantity Model

## Single instantaneous purchase (Newsvendor Model)

D = Demand -- a random variable, assumed to be normally distributed

c = unit cost

r = unit revenue


b = unit salvage value ( $r > c > b$ )

$q^*$  = Quantity to order

**Find optimum balance between under order ( $r-c$ ) vs. over order ( $c-b$ ) – maximize profit**

$$P(D \leq q^*) = (r-c) / (r-b) = (r-c) / ((r-c) + (c-b)) = u / (u + o)$$

$$(r-c) / (r-b) = \alpha$$



If  $D \sim \text{Normal}(\mu, \sigma)$

$$q^* = \mu + k^* \sigma$$

$$\alpha = 95\% \rightarrow k = 1.64$$

$$\alpha = 99\% \rightarrow k = 2.32$$

$$\alpha = 99.9\% \rightarrow k = 3.09$$

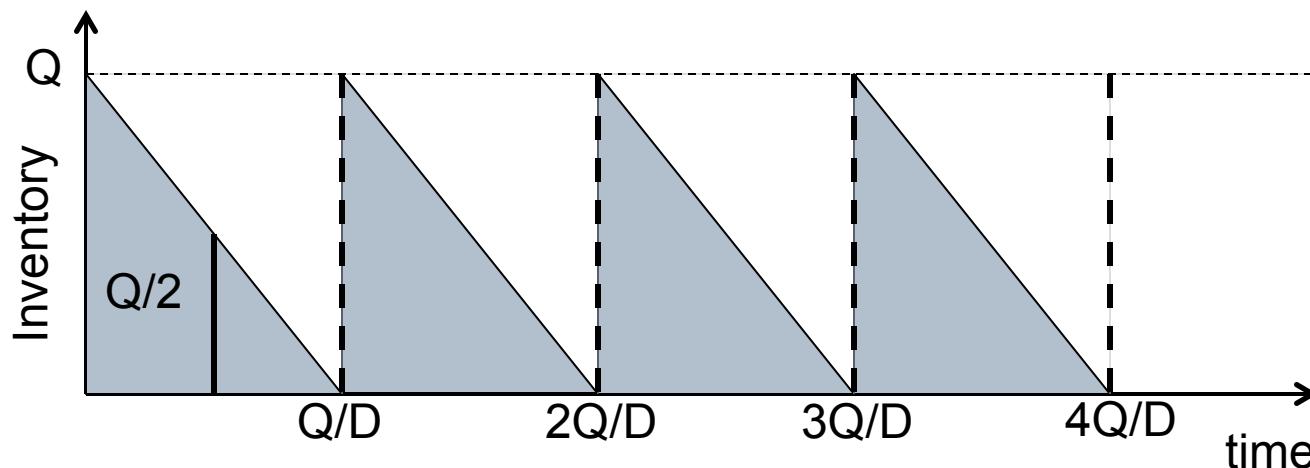
# Economic Order Quantity Model, continued

## Optimal Ordering Quantity

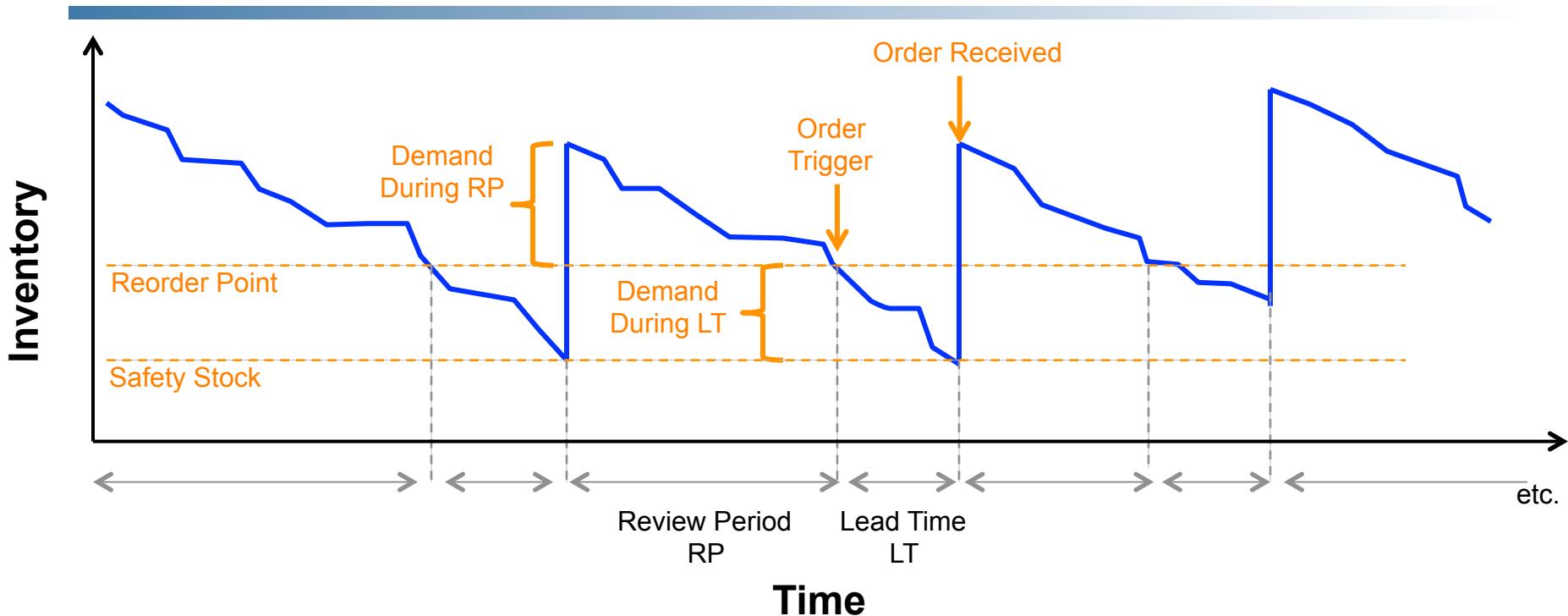
$Q$  = Order Quantity

$D$  = Demand Rate (units/time)

$C$  = Purchasing Cost (\$/unit)


$F$  = Fixed Order Cost (\$)

$H$  = Inventory Holding Cost Rate (% of inventory value per unit time)


$$Q = \sqrt{(2D*F)/(C*H)}$$

Inventory Holding Cost =  $C * H * (Q/2)$ ; Order Cost =  $F * (D/Q)$ ;

Total Cost =  $V(Q) = F * (D/Q) + C*H*(Q/2)$



# Periodic Review Model



**Safety stock** = Reserve stock held to guard against running out of supplies (stock out)

**Review Period** = Time between receiving an order and placing the next one

**Lead Time** = Time between placing order and receiving supplies

**Demand During Lead Time (DDLT)** = Amount of supplies consumed while waiting for order to arrive

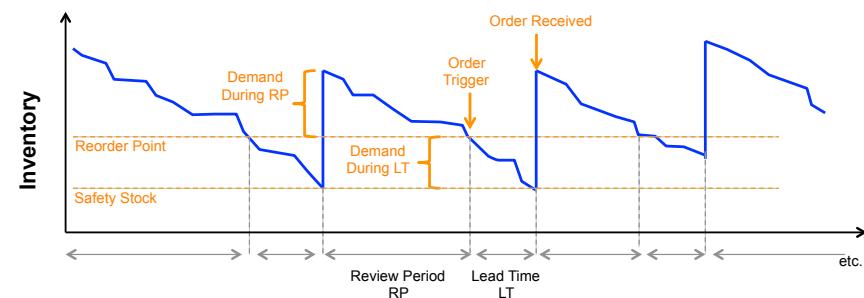
**Demand During Review Period (DDRP)** = Amount consumed during review period

**Order Point, R** = Inventory level at which an order is triggered

**Order Quantity (Q)** = The amount of material ordered at one time

**Order Cost** = How much it costs to place an individual order

**Inventory Holding Cost** = How much it costs to hold inventory, % of value per year.


# Periodic Review Model

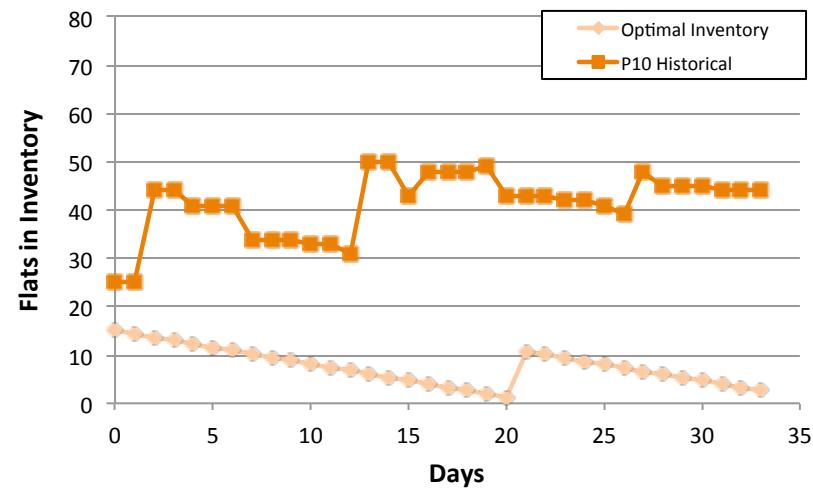
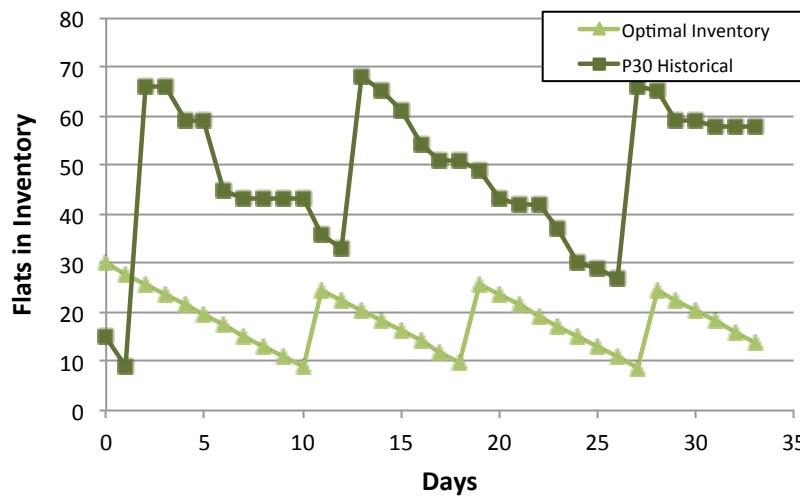
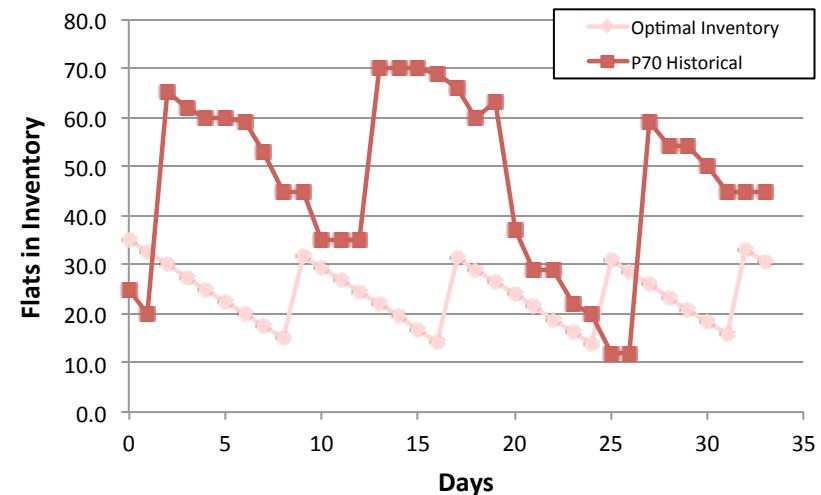
**Continuous review, “Order Q whenever inventory reaches R”**

- Set Q as the EOQ solution
- Set R as the Newsvendor solution:  $P(\text{DDLT} \leq R) = \alpha$   
where  $\alpha$  is the desired service level (e.g. 95%) and DDLT = Demand During Lead Time

$$R = E(\text{DDLT}) + k\sigma(\text{DDLT})$$

$$Q = \sqrt{\frac{2DF}{CH}}$$






# Real World Example

- In Vitro Pharmacology Automation Lab
- Eight liquid handler workstations for compound and reagent dispensing
  - Three tip sizes: 70, 30, 10  $\mu\text{L}$
  - Inventory stocked in the automation lab



# Optimal vs. Historical Inventory

- Calculated optimal inventory based on expected demand and variability
- Optimal inventories are much lower!



# Calculations

| <b>Economic Order Quantity (EOQ) Model</b>         | <b>70 uL</b> | <b>30 uL</b> | <b>10 uL</b> |              |
|----------------------------------------------------|--------------|--------------|--------------|--------------|
| Order Quantity, Q (units) =                        | 19.6         | 17.9         | 10.2         |              |
| Demand Rate DDLTRP/(LT+RP), D (units/time)         | 2.51         | 2.11         | 0.69         |              |
| Purchasing Cost, C (\$/unit)                       | \$ 400       | \$ 400       | \$ 400       |              |
| Fixed Order Cost, F (\$)                           | \$ 25        | \$ 25        | \$ 25        |              |
| Annual Inventory Holding Cost Rate %/\$/year)      | 30%          | 30%          | 30%          |              |
| <b>Continuous Review (R,Q) Model</b>               | <b>70 uL</b> | <b>30 uL</b> | <b>10 uL</b> |              |
| Order trigger level, R = E(DDLT) + k * sigma(DDLT) | 28.8         | 20.7         | 5.1          |              |
| Q from EOQ model above                             | 19.6         | 17.9         | 10.2         |              |
| Desired Service Level, alpha (%)                   | 99.9%        | 99.0%        | 99.0%        |              |
| k (95% = 1.64, 99% = 2.32, 99.9% = 3.09)           | 3.09         | 2.32         | 2.32         |              |
| <b>Results</b>                                     | <b>70 uL</b> | <b>30 uL</b> | <b>10 uL</b> | <b>Total</b> |
| Historical Average Daily Inventory                 | 48           | 36           | 24           | 108          |
| Average Daily Reduction in Inventory               | 23           | 22           | 20           | 65           |
| Value of Inventory Reduction @ \$400/flat          | \$ 9,233     | \$ 8,982     | \$ 7,904     | \$ 26,119    |
| Yearly Holding Cost @ 30%                          | \$ 2,770     | \$ 2,695     | \$ 2,371     | \$ 7,836     |
| Five Year Present Value of Inventory Savings       |              |              |              | \$ 58,248    |

# Calculations

## Economic Order Quantity (EOQ) Model

|                                               | 70 uL  | 30 uL  | 10 uL  |
|-----------------------------------------------|--------|--------|--------|
| Order Quantity, Q (units) =                   | 19.6   | 17.9   | 10.2   |
| Demand Rate DDLTRP/(LT+RP), D (units/time)    | 2.51   | 2.11   | 0.69   |
| Purchasing Cost, C (\$/unit)                  | \$ 400 | \$ 400 | \$ 400 |
| Fixed Order Cost, F (\$)                      | \$ 25  | \$ 25  | \$ 25  |
| Annual Inventory Holding Cost Rate %/\$/year) | 30%    | 30%    | 30%    |

## Continuous Review (R,Q) Model

|                                                    | 70 uL | 30 uL | 10 uL |
|----------------------------------------------------|-------|-------|-------|
| Order trigger level, R = E(DDLT) + k * sigma(DDLT) | 28.8  | 20.7  | 5.1   |
| Q from EOQ model above                             | 19.6  | 17.9  | 10.2  |
| Desired Service Level, alpha (%)                   | 99.9% | 99.0% | 99.0% |
| k (95% = 1.64, 99% = 2.32, 99.9% = 3.09)           | 3.09  | 2.32  | 2.32  |

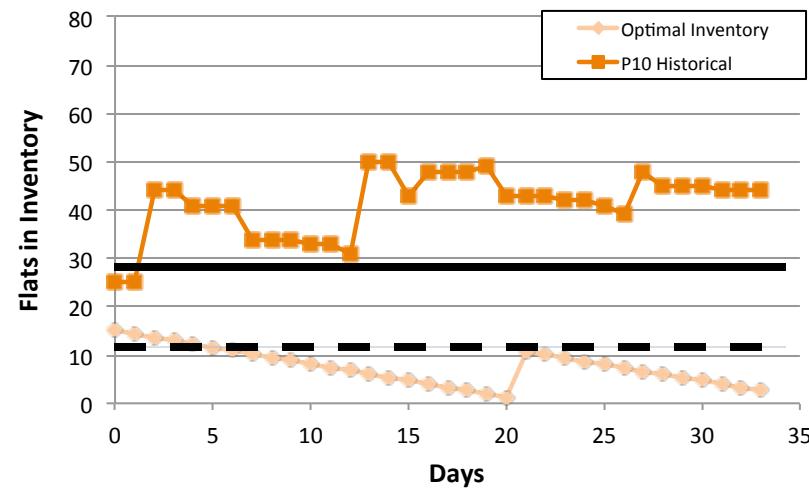
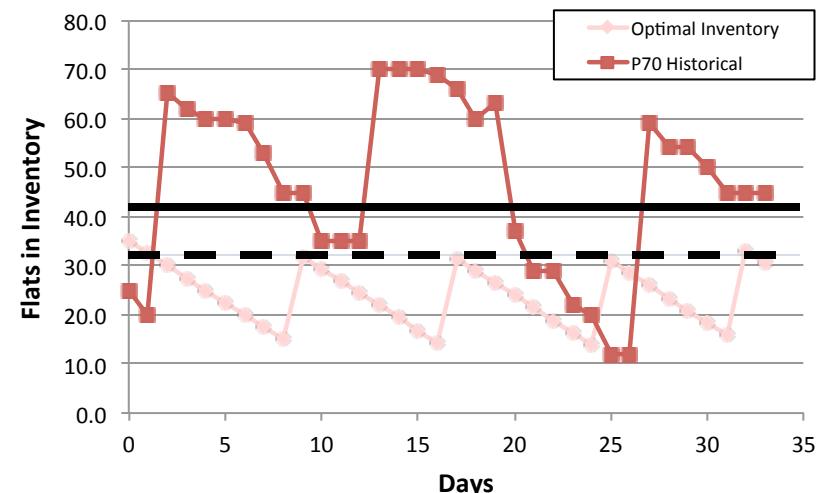
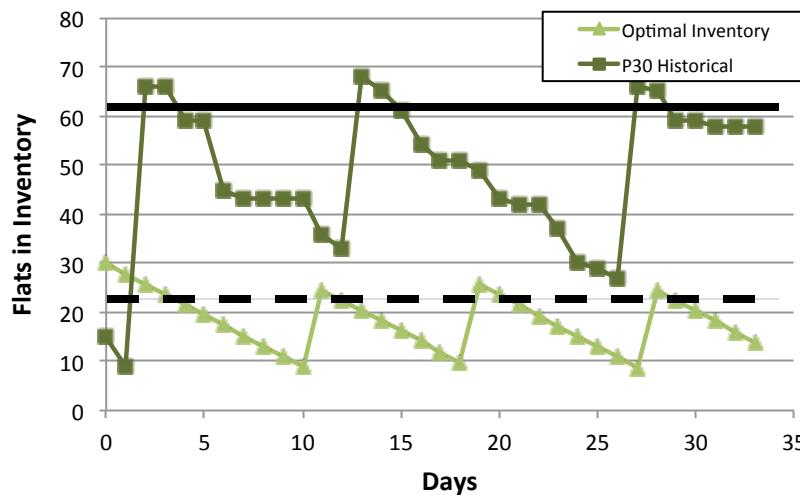
## Results

|                                           | 70 uL    | 30 uL    | 10 uL    | Total     |
|-------------------------------------------|----------|----------|----------|-----------|
| Historical Average Daily Inventory        | 48       | 36       | 24       | 108       |
| Average Daily Reduction in Inventory      | 23       | 22       | 20       | 65        |
| Value of Inventory Reduction @ \$400/flat | \$ 9,233 | \$ 8,982 | \$ 7,904 | \$ 26,119 |
| Yearly Holding Cost @ 30%                 | \$ 2,770 | \$ 2,695 | \$ 2,371 | \$ 7,836  |

Five Year Present Value of Inventory Savings

\$ 58,248

(For only one lab, one type of liquid handler)




# Before and After?



No!  
Kanban  
stocking system  
was set up, but  
staff continued  
to overstock  
inventory.

# Historical, Optimal, and Actual Inventory

- Inventories have been lower, but not optimal (black lines indicate current full stock level)
- Round 2: Setting smaller shelf areas for stocking (dotted lines), encouraging more frequent replenishment
- Keep a building emergency reserve in stock room



# Conclusions

---

- A few minutes of inventory tracking each day, and two hours of manual calculations can save many thousands of dollars, and free up valuable space.
- Ideally, a software ordering system with bar code scanner can do all the calculations automatically
  - Monitor inventory
  - Trigger consumable orders
  - Stock a more accurate mix of consumables
- Despite obvious benefits, staff are extremely reluctant to experience a stock out.
  - People don't like empty shelves & don't like to place orders
- The exercise does provide a reality check on current inventory levels and ordering frequency.

# Acknowledgments

---

Andrew Hashkes

Peter Goldenblatt

Savannah Bilbao